
1. Introduction
The frequency of software product upgrading is increasing with the rapid development of the

software industry, which makes the cost of regression testing higher and higher. It often takes days
or even months to complete centralized testing by fully running test cases in large-scale software
testing. Testers want to prioritize test cases according to certain criteria In this case, it enables high
priority use cases to be executed as early as possible, thus improving test efficiency. The test case
priority technology is proposed to solve this problem, the technology points out: Different test cases
have different contributions to the completion of test objectives, it is necessary to compare and rank
different test cases according to the historical information of the test to achieve the test objectives
more quickly, this prioritizes the execution of relatively important test cases. The generation of
interlocking test cases mainly includes: Document [3] generates test cases from specifications of
relational algebraic query representations. Document [4] adopts the test data generation method
based on Boolean specification. In addition, test case generation based on Z language is mature. But
these test cases are difficult to understand and use because of their high formalization and poor
versatility. The test case of interlocking software is designed for the standard station manually by
experienced debugging engineers in China, it has a strong dependence on testers’ professional
knowledge, which affects the adequacy and efficiency of testing. The third-party testing generally
adopts black-box testing because of the complexity of security software and the fairness of
interlocking software testing.

2. Time Petri Net Detection Model
Petri net is a directed weighted bipartite graph composed of two kinds of nodes, including Place,

Transition, Connection and Token, as shown in Figure 1.

Figure 1 Petri net model

P1

P2

P3

P4

P5

t1

t2

t3

2018 7th International Conference on Advanced Materials and Computer Science (ICAMCS 2018)

Research on On-line Testing of Real-time Software Based on Time Petri
Network Model

Rao Tingting1, Xiong Caiquan2, Wang Mingli3
1Hubei University of Technology, Wuhan, China
2Hubei University of Technology, Wuhan, China

3Huazhong University of Science and Technology, Wuhan, China

Keywords: Time Petri net; Test; Top-level design; Dispatch; Parallel

Abstract: Parallel test task scheduling scheme has been an unsolved problem in automatic test
system. The time Petri net model for parallel testing is established based on the theory of Petri net,
the time Petri net-based parallel testing task modeling method is proposed, which combines the
resource conflict problem caused by multi-task parallel scheduling in UML parallel testing system;
The parallel task scheduling sequence with the shortest time required to complete all test tasks is
obtained comparing the completion time of different sequences; Finally, an example is simulated
and analyzed under this model; The experimental results show that the model is suitable for
describing the task scheduling process of this type of system.

Published by CSP © 2018 the Authors 338

The constrained transition enabling process based on forbidden arc is adopted. The input form of
the set of libraries of constrained transition t is

*{ | }in i iP p p t= ∈ , and
*

1 { | }k kP p p t= ∈ ,
*

2 { | }j jP p p t= ∈
are assumed. Among them, 1P is set by the input library, and it does not contain forbidden arcs.
Correspondingly, 2P is set by the input library, and it contains forbidden arcs. It can be obtained
based on the above definition: 1 2inP P P= ∪ 。 (,)jb p tw denotes the prohibited arc weight between

repository jp and constraint transition t . (,)jb p t denotes the forbidden arc between repository jp
and constraint transition t . The weight of forward connection is larger than that of forward
connection if for any ()im p , and the weight of prohibited arc connection with constrained transition
t is larger than that of identification number jp , then the constrained transition state t is in the
state of transition enablement, otherwise the constrained transition state t is in the state of
transition disability.

() ()(,) (,)

(,)

()

1, : () : ()

0, : ()
j

j

i i pre p t j j b p t

j j b p t

E t

p m p w p m p w

p m p w

=

 ∀ ≥ ∧ ∀ <


∃ ≥ (1)
Taking model constraint 3 as an example, the controller is designed based on the

above-mentioned prohibition arc strategy. The specific process is as follows::
Process 1: Change 2t has the highest priority because change assignment 2()pr t is the largest,

then the other transition processes 3t , 6t , 12t , 13t etc. are in the unavailable state when transition 2t is
in the enabling state, The enabling conditions for the above changes are 1() 1m p ≥ . Therefore, the
enabling state of transition process 3t , 6t , 12t , 13t can be effectively controlled based on 1()m p value,
and the prohibited arc design can be carried out.

Process 2: The prohibited arc is designed based on the design principle of process 1, the
specific process is shown in the network connection diagram of Figure 2, and the graph is a
prohibited arc design form for model constraint 3.

1p 4p

12p

13p

2t 3t

12t

13t

6p
6t

Figure 2 Prohibits arc constraint addition

3. Test Case Based on time Petri Net Detection Graph
The test case generation process based on sequence diagram is shown in figure 3.

Sequence
diagram

Digraph SG

Tes t Case Generat ion
Method

Tes t coverage
criteria

test case

conversion

Combinat ion Combinat ion

generate

Figure 3 Test case generation process based on sequence diagram

The test case generation steps based on sequence diagram are as follows:
339

(1) Add constraints to the sequence diagram.
(2) All scenarios of the sequence diagram are obtained by traversing all the valid event sequences

in the sequence diagram, and the corresponding directed graph SG is generated.
(3) Define test coverage criteria and test case generation methods to generate test cases.
The method of generating directed graph SG from sequence graph
Definition 1 Digraph SG=<NSG,∑SG, q0SG,FSG >, among:
NSG={N1,N2,…,Nm} is a collection of message nodes, Nj=<message Name, from Object, to

Object,[c()]>, Nj is a node based on message m, from Object is the sending object of the message
and to Object is the receiving object of the message. c() is the condition for monitoring messages;
∑SG is a set of transformed edges between nodes; q0SG is the starting node and the only entry node
of directed graph SG. FSG is the terminal set of directed graph SG.

Definition 2 Test scenario TS: Test scenarios for sequence diagrams TS={TS1,TS2,…,TSn}
represents the scenario path in the sequence diagram, including normal and abnormal scenarios,
among:

TSi:<ScnId, StartState, NodeSet, NextState>, among, ScnIdrepresents the unique identification
number of the test scenario, StartState represents the initial state of the system before TSi is
executed, NodeSet represents the set of message nodes that occur in the test scenario TSi, NextState
represents the state of the system after TSi is executed.

The steps for converting UML sequence diagram to directed graph SG are as follows:
(1) Initialization: NSG=NULL;
(2) corresponding message node N and transformation edge ∑ between nodes are generated

Combining the sequence and constraints of message sending in sequence graph;
(3) The trigger information of the node with 0 entrance is recorded as q0. The post-information

of the node with a degree of 0 is recorded as F.
A directed graph SDG can only correspond to one starting point, but there may be one or more

endpoints for different test scenarios.
Test coverage criteria
The test coverage standard is a measure of the adequacy of software testing and a proof of the

validity and reliability of test results, any test should meet a certain coverage. This paper uses the
node coverage criteria, transfer edge coverage criteria and full path coverage criteria starting from
the possible operational errors, message interaction errors and scene errors among objects, it
traverses the directed graph SG to obtain the corresponding test case set.

Criterion 1: Node Coverage Criterion: All nodes on the SG have been visited at least once.
Criterion 2: Transfer Edge Coverage Criterion: All transfer edges on SG have been executed at

least once.
Criterion 3: Logical Path Coverage Criterion: All paths on SG have been executed at least once.
Aiming at the hidden operation errors in system design, it is necessary to traverse the

corresponding SG in the sequence diagram to generate test cases that meet the test coverage criteria,
it gets all the paths from the initial node to each termination node, accesses each path to obtain the
corresponding test scenario.

The constraints contained by each node are recorded when traversing a digraph SG, including the
state information of the object, the branching conditions and the input and final output of the scene,
each constraint is connected by logic and (&).Test cases are output results of preconditions, input
events, event constraints, and expected for any scenario. This paper takes the interlocking route
establishment process as an example to generate test cases, it satisfies the conditional requirements
of interlocking test cases based on coverage criteria of nodes, transfer edges and logical paths.
However, it is the focus of future research to optimize the generation of interlocking software test
cases by considering the dependencies among the use cases because only a single test case is
considered.

4. Conclusion
At present, the main method of generating software test data is manual and semi-manual, which

340

has large workload, long test cycle and is easy to be omitted; the test case generation method based
on Petri net is mainly applied to scenario class testing. The test model is modeled by Petri net theory,
then the model is validated, and finally the test case set is generated; This method supports
regression generation of test case sets, making up for changes in test case set requirements; At the
same time, it supports the automatic generation of test cases; This method can effectively describe
the state behavior of the system and guarantee a high coverage index, it helps to improve the
efficiency and quality of testing.

References
[1] Denaro G, Pezzè M. Petri Nets and Software Engineering [J]. Lecture Notes in Computer
Science, 2004, 29(548):439-466.
[2] Lara J D, Guerra E. From types to type requirements: genericity for model-driven engineering
[J]. Software & Systems Modeling, 2013, 12(3):453-474.
[3] Kamsu-Foguem B, Noyes D. Graph-based reasoning in collaborative knowledge management
for industrial maintenance [J]. Computers in Industry, 2013, 64(8):998-1013.
[4] AnaPaulaEstrada-Vargas, ErnestoLópez-Mellado, Jean-JacquesLesage. Input–output
identification of controlled discrete manufacturing systems [J]. International Journal of Systems
Science, 2014, 45(3):456-471.
[5] Krichen M. A formal framework for black-box conformance testing of distributed real-time
systems.[J]. 2012.
[6] Naija M, Ahmed S B, Bruel J M. New schedulability analysis for real-time systems based on
MDE and Petri Nets model at early design stages[C]// International Joint Conference on Software
Technologies. 2016.

341

